Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 598]
|
|
Сложность: 5- Классы: 9,10,11
|
Существует ли такое натуральное число n > 101000, не делящееся на 10, что в его десятичной записи можно
переставить две различные ненулевые цифры так, чтобы множество его простых
делителей не изменилось?
|
|
Сложность: 5- Классы: 9,10,11
|
Саша написал на доске ненулевую цифру и приписывает к ней справа
по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите,
что на доске не более 100 раз был написан точный квадрат.
|
|
Сложность: 5- Классы: 9,10,11
|
Расстоянием между числами a1a2a3a4a5 и b1b2b3b4b5 назовём максимальное i, для которого ai ≠ bi. Все пятизначные числа выписаны друг за другом в некотором порядке. Какова при этом минимально возможная сумма расстояний между соседними числами?
|
|
Сложность: 5- Классы: 9,10,11
|
Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
|
|
Сложность: 5 Классы: 9,10,11
|
Обозначим через S(k) сумму цифр натурального числа k. Натуральное число a назовём n-хорошим, если существует такая последовательность натуральных чисел a0, a1, ..., an, что an = a и ai+1 = ai – S(ai) при всех i = 0, 1, ..., n – 1. Верно ли, что для любого натурального n существует натуральное число, являющееся n-хорошим, но не являющееся (n+1)-хорошим?
Страница:
<< 66 67 68 69
70 71 72 >> [Всего задач: 598]