ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109233

Темы:   [ Прямая призма ]
[ Теорема Пифагора в пространстве ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109234

Темы:   [ Прямая призма ]
[ Площадь сечения ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

В основании прямой призмы лежит равносторонний треугольник. Плоскость, проходящая через одну из сторон нижнего основания и противоположную вершину верхнего, наклонена к плоскости нижнего основания под углом ϕ . Площадь этого сечения равна Q . Найдите объём призмы.
Прислать комментарий     Решение


Задача 109235

Темы:   [ Прямая призма ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Основанием прямой призмы служит равнобедренная трапеция с острым углом α . Боковая сторона трапеции и её меньшее основание равны. Найдите объём призмы, если диагональ призмы равна a и образует с плоскостью основания угол β .
Прислать комментарий     Решение


Задача 109236

Темы:   [ Прямая призма ]
[ Объем призмы ]
Сложность: 3
Классы: 10,11

Найдите объём прямой призмы, основанием которой служит прямоугольный треугольник с острым углом α , если боковое ребро призмы равно l и образует с диагональю большей боковой грани угол β .
Прислать комментарий     Решение


Задача 66272

Темы:   [ Прямая призма ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Существует ли выпуклый многогранник, у которого рёбер столько же, сколько диагоналей? (Диагональю многогранника называется отрезок, соединяющий две вершины, не лежащие в одной грани.)

Прислать комментарий     Решение

Страница: 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .