ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 131]      



Задача 86954

Темы:   [ Призма (прочее) ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В призме ABCA1B1C1 медианы оснований ABC и A1B1C1 пересекаются соответственно в точках O и O1 . Через середину отрезка OO1 проведена прямая, параллельная прямой CA1 . Найдите длину отрезка этой прямой, лежащего внутри призмы, если CA1 = a .
Прислать комментарий     Решение


Задача 87253

Темы:   [ Правильная призма ]
[ Двугранный угол ]
Сложность: 3
Классы: 8,9

Найдите объём правильной четырёхугольной призмы, если её диагональ образует с плоскостью боковой грани угол 30o , а сторона основания равна a .
Прислать комментарий     Решение


Задача 87263

Темы:   [ Правильная призма ]
[ Объем призмы ]
Сложность: 3
Классы: 8,9

Наибольшая диагональ правильной шестиугольной призмы равна d и составляет с боковым ребром призмы угол 30o . Найдите объём призмы.
Прислать комментарий     Решение


Задача 87272

Темы:   [ Призма (прочее) ]
[ Круглые тела (прочее) ]
Сложность: 3
Классы: 8,9

Основание призмы ABCA1B1C1 – равносторонний треугольник ABC со стороной a . Ортогональная проекция вершины A1 совпадает с центром основания ABC , а боковое ребро образует с плоскостью основания угол 60o . Найдите боковую поверхность призмы.
Прислать комментарий     Решение


Задача 87286

Темы:   [ Правильная призма ]
[ Теорема о трех перпендикулярах ]
[ Объем призмы ]
Сложность: 3
Классы: 8,9

В правильной треугольной призме плоскость, проходящая через сторону одного основания и противоположную ей вершину другого основания, образует с плоскостью основания угол, равный 45o . Площадь сечения равна S . Найдите объём призмы.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 131]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .