ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 3]      



Задача 87272

Темы:   [ Призма (прочее) ]
[ Круглые тела (прочее) ]
Сложность: 3
Классы: 8,9

Основание призмы ABCA1B1C1 – равносторонний треугольник ABC со стороной a . Ортогональная проекция вершины A1 совпадает с центром основания ABC , а боковое ребро образует с плоскостью основания угол 60o . Найдите боковую поверхность призмы.
Прислать комментарий     Решение


Задача 66958

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Круглые тела (прочее) ]
[ Максимальное/минимальное расстояние ]
Сложность: 4
Классы: 10,11

Дан выпуклый многогранник и точка $K$, не принадлежащая ему. Для каждой точки $M$ многогранника строится шар с диаметром $MK$. Докажите, что в многограннике существует единственная точка, принадлежащая всем таким шарам.
Прислать комментарий     Решение


Задача 78566

Темы:   [ Метод ГМТ в пространстве ]
[ Круглые тела (прочее) ]
[ ГМТ в пространстве (прочее) ]
Сложность: 4+
Классы: 10,11

Даны окружность O, точка A, лежащая на ней, перпендикуляр к плоскости окружности O, восставленный из точки A, и точка B, лежащая на этом перпендикуляре. Найдите геометрическое место оснований перпендикуляров, опущенных из точки A на прямые, проходящие через точку B и произвольную точку окружности O.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .