ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 47]      



Задача 61184

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 3+
Классы: 10,11

Докажите, что уравнение окружности (или прямой) на комплексной плоскости всегда может быть записано в виде  Azz + Bz – B z + C = 0,  где A и C – чисто мнимые числа.

Прислать комментарий     Решение

Задача 61187

Темы:   [ Дробно-линейные преобразования ]
[ Инверсия (прочее) ]
Сложность: 3+
Классы: 10,11

Представьте в виде композиции дробно-линейного отображения   w =   и комплексного сопряжения   w = z  инверсию относительно окружности
  а) с центром i и радиусом R = 1;
  б) с центром  Reiφ  и радиусом R;
  в) с центром z0 и радиусом R.

Прислать комментарий     Решение

Задача 109162

Темы:   [ Геометрия комплексной плоскости ]
[ Окружность, вписанная в угол ]
Сложность: 3+
Классы: 10,11

Среди комплексных чисел p , удовлетворяющих условию  |p – 25i| ≤ 15,  найти число с наименьшим аргументом.

Прислать комментарий     Решение

Задача 61086

Тема:   [ Преобразования комплексной плоскости (прочее) ]
Сложность: 4-
Классы: 9,10,11

Пусть точка z движется по единичной окружности против часовой стрелки. Опишите движение следующих точек
  а)  2z2;   б)  z + 3z2;   в) 3z + z2;   г)  z – 3;   д)  (z – i)–1;   е)  (z – 2)–1;   ж)  Rz + ρzn  (ρ < R).

Прислать комментарий     Решение

Задача 61087

Тема:   [ Преобразования комплексной плоскости (прочее) ]
Сложность: 4-
Классы: 9,10,11

Точка z против часовой стрелки обходит квадрат с вершинами –1 – i,  2 – i,  2 + 2i,  –1 + 2i.  Как при этом ведут себя точки
  a)  z2;   б)  z3;   в)  z–1?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 47]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .