Страница:
<< 33 34 35 36 37 38 39 [Всего задач: 192]
Две команды шахматистов одинаковой численности сыграли матч: каждый сыграл по одному разу с каждым из другой команды. В каждой партии давали 1 очко за победу, ½ – за ничью и 0 – за поражение. В итоге команды набрали поровну очков. Докажите, что какие-то два участника матча тоже набрали поровну очков, если в обеих командах было:
а) по 5 шахматистов;
б) произвольное равное число шахматистов.
|
|
Сложность: 6 Классы: 9,10,11
|
Докажите, что существует такое натуральное число
n , что если правильный треугольник со стороной
n разбить прямыми, параллельными его сторонам, на
n2 правильных треугольников со стороной 1,
то среди вершин этих треугольников можно выбрать
1993
n точек, никакие три из которых не являются
вершинами правильного треугольника (не обязательно со сторонами, параллельными сторонам исходного
треугольника).
Страница:
<< 33 34 35 36 37 38 39 [Всего задач: 192]