ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 192]      



Задача 65430

Темы:   [ Числовые таблицы и их свойства ]
[ Четность и нечетность ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10,11

Василиса Премудрая расставляет все натуральные числа от 1 до n², где  n > 1,  в клетки таблицы размером n×n. Кандидат в женихи должен вычеркнуть строку и столбец так, чтобы сумма всех оставшихся чисел была чётной. Всегда ли выполнимо такое задание?

Прислать комментарий     Решение

Задача 73594

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?

Прислать комментарий     Решение

Задача 110017

Темы:   [ Десятичная система счисления ]
[ Ребусы ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9

К натуральному числу A приписали справа три цифры. Получившееся число оказалось равным сумме всех натуральных чисел от 1 до A . Найдите A .
Прислать комментарий     Решение


Задача 65710

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Дана клетчатая таблица 100×100, клетки которой покрашены в чёрный и белый цвета. При этом во всех столбцах поровну чёрных клеток, в то время как во всех строках разные количества чёрных клеток. Каково максимальное возможное количество пар соседних по стороне разноцветных клеток?
Прислать комментарий     Решение


Задача 66021

Темы:   [ Целочисленные и целозначные многочлены ]
[ Раскраски ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 9,10,11

Автор: Жуков Г.

Учитель собирается дать детям задачу следующего вида. Он сообщит им, что он задумал многочлен P(x) степени 2017 с целыми коэффициентами, старший коэффициент которого равен 1. Затем он сообщит им k целых чисел n1, n2, ..., nk и отдельно сообщит значение выражения  P(n1)P(n2)...P(nk).  По этим данным дети должны найти многочлен, который мог бы задумать учитель. При каком наименьшем k учитель сможет составить задачу такого вида так, чтобы многочлен, найденный детьми, обязательно совпал бы с задуманным?

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 192]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .