Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 43]
|
|
Сложность: 2+ Классы: 8,9,10
|
Докажите, что x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.
a, b, c – такие три числа, что a + b + c = 0. Доказать, что в этом случае справедливо соотношение ab + ac + bc ≤ 0.
|
|
Сложность: 3- Классы: 7,8,9
|
Положительные числа a, b, c таковы, что a ≥ b ≥ c и a + b + c ≤ 1. Докажите, что a² + 3b² + 5c² ≤ 1.
|
|
Сложность: 3 Классы: 8,9,10
|
Про действительные числа a, b, c известно, что (a + b + c)c < 0. Докажите, что b² – 4ac > 0.
a1, a2, ..., an – такие числа, что a1 + a2 + ... + an = 0. Доказать, что в этом случае справедливо соотношение S = a1a2 + a1a3 + ... + an–1an ≤ 0
(в сумму S входят все возможные произведения aiaj, i ≠ j).
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 43]