Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 43]
|
|
Сложность: 4 Классы: 9,10,11
|
Дана невозрастающая последовательность неотрицательных чисел
a1 ≥ a2 ≥ a3 ≥ ... ≥ a2k+1 ≥ 0.
Докажите неравенство:
|
|
Сложность: 3- Классы: 7,8,9
|
Положительные числа a, b, c, d таковы, что a ≤ b ≤ c ≤ d и a + b + c + d ≥ 1. Докажите, что a² + 3b² + 5c² + 7d² ≥ 1.
|
|
Сложность: 3+ Классы: 8,9,10
|
Доказать неравенство .
|
|
Сложность: 3+ Классы: 9,10,11
|
В числовом наборе n чисел, причём одно из чисел равно 0, а другое равно 1.
а) Какова наименьшая возможная дисперсия такого набора чисел?
б) Каким для этого должен быть набор?
|
|
Сложность: 4- Классы: 8,9,10,11
|
Можно ли:
а) нагрузить две монеты так, чтобы вероятности выпадения "орла" и "решки" были разные, а вероятности выпадения любой из комбинаций "решка, решка", "орел, решка", "орел, орел" были бы одинаковы?
б) нагрузить две кости так, чтобы вероятность выпадения любой суммы от 2 до 12 была одинаковой?
Страница:
<< 3 4 5 6 7 8
9 >> [Всего задач: 43]