Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 177]
|
|
Сложность: 4- Классы: 9,10,11
|
На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)
Докажите неравенство
|
|
Сложность: 4- Классы: 9,10,11
|
Числа a, b, c таковы, что уравнение x³ + ax² + bx + c = 0 имеет три действительных корня. Докажите, что если –2 ≤ a + b + c ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2].
|
|
Сложность: 4- Классы: 5,6,7
|
Найдите все пары простых чисел p и q, обладающие следующим свойством: 7p + 1 делится на q, а 7q + 1 делится на p.
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число В таблице зачеркнули n чисел таким образом, что никакие
два зачёркнутых числа не находятся в одном столбце или в одной строке.
Докажите, что сумма зачёркнутых чисел не меньше 1.
Страница:
<< 29 30 31 32
33 34 35 >> [Всего задач: 177]