Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 117]
|
|
Сложность: 4 Классы: 10,11
|
Рассматриваются такие квадратичные функции f(x) = ax² + bx + c, что a < b и f(x) ≥ 0 для всех x.
Какое наименьшее значение может принимать выражение a+b+c/b–a ?
Петя и Коля играют в следующую игру: они по очереди изменяют один из коэффициентов a или b квадратного трёхчлена x² + ax + b: Петя на 1, Коля – на 1 или на 3. Коля выигрывает, если после хода одного из игроков получается трёхчлен, имеющий целые корни. Верно ли, что Коля может выиграть при любых начальных целых коэффициентах a и b независимо от игры Пети?
|
|
Сложность: 4+ Классы: 10,11
|
Приведенные квадратные трёхчлены f(x) и g(x) принимают отрицательные значения на непересекающихся интервалах.
Докажите, что найдутся такие положительные числа α и β, что для любого
действительного x будет выполняться неравенство αf(x) + βg(x) > 0.
|
|
Сложность: 5- Классы: 9,10,11
|
Докажите, что если для чисел p1, p2, q1 и q2 выполнено неравенство
(q1 – q2)² + (p1 – p2)(p1q2 – p2q1) < 0, то квадратные трёхчлены
x² + p1x + q1 и x² + p2x + q2 имеют вещественные корни, причём между двумя корнями каждого из них лежит корень другого.
|
|
Сложность: 5- Классы: 8,9,10
|
Известно, что f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение f(g(h(x))) = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 117]