ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 210]
Даны различные натуральные числа a, b. На координатной плоскости нарисованы графики функций y = sin ax, y = sin bx и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a, b и такое, что график функции y = sin cx проходит через все отмеченные точки.
Когда 4p³ + 27q² < 0, уравнение x³ + px + q = 0 имеет три действительных корня (неприводимый случай кубического уравнения), но для того, чтобы их найти по формуле Кардано, необходимо использование комплексных чисел. Однако можно указать все три корня в явном виде через тригонометрические функции.
а) Докажите, что при 4p³ + 27q² < 0 уравнение x³ + px + q = 0 заменой x = αy + β сводится к уравнению ay³ – 3by² – 3ay + b = 0 (*) б) Докажите, что решениями уравнения (*) будут числа y1 = tg , y2 = tg , y3 = tg , где φ определяется из условий:
h1 = , hn + 1 = (n 1).
Докажите неравенство hk < 1, 03.
а) k2qk - 1; б) k sin kx; в) k2cos kx.
Страница: << 29 30 31 32 33 34 35 >> [Всего задач: 210] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|