|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Существует ли такая бесконечная периодическая последовательность, состоящая из букв a и b, что при одновременной замене всех букв a на aba и букв b на bba она переходит в себя (возможно, со сдвигом)? Пусть an – число решений уравнения x1 + ... + xk = n в целых неотрицательных числах и F(x) – производящая функция последовательности an. Докажите, что для всех неотрицательных n выполняются равенства а) б) Докажите тождество:
Вычислите производящие функции следующих последовательностей: В треугольнике ABC взята такая точка O, что ∠COA = ∠B + 60°, ∠COB = ∠A + 60°, AOB = ∠C + 60°. Докажите, что если из отрезков AO, BO и CO можно составить треугольник, то из высот треугольника ABC тоже можно составить треугольник и эти треугольники подобны. Найдите все такие натуральные n, что при некоторых различных натуральных a, b, c и d среди чисел |
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 210]
Известно число sin α. Какое наибольшее число значений может принимать а) sin α/2, б) sin α/3?
Из вершины A квадрата ABCD со стороной 1 проведены два луча, пересекающие квадрат так, что вершина C лежит между лучами. Угол между лучами равен β. Из вершин B и D проведены перпендикуляры к лучам. Найдите площадь четырёхугольника с вершинами в основаниях этих перпендикуляров.
Равнобедренные треугольники ABC (AB = BC) и
A1B1C1
(A1B1 = B1C1) подобны и AC : A1C1 = 5 :
Равнобедренные треугольники ABC (AB = BC) и A1B1C1 (A1B1 = B1C1) подобны и AB : A1B1 = 2 : 1. Вершины A1, B1 и C1 расположены соответственно на сторонах CA, AB и BC, причём A1B1 ⊥ AC. Найдите угол B.
Страница: << 32 33 34 35 36 37 38 >> [Всего задач: 210] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|