Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1023]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Обозначим через Pk,l(n) количество разбиений числа n на не более чем k слагаемых, каждое из которых не превосходит l.
Докажите равенства:
а) Pk,l(n) – Pk,l–1(n) = Pk–1,l(n – l);
б) Pk,l(n) – Pk–1,l(n) = Pk,l–1(n – k);
в) Pk,l(n) = Pl,k(n);
г) Pk,l(n) = Pk,l(kl – n).
|
|
|
Сложность: 3+ Классы: 6,7,8
|
Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании?
В стране Леонардии все дороги – с односторонним движением. Каждая дорога соединяет два города и не проходит через другие города. Департамент статистики вычислил для каждого города суммарное число жителей в городах, откуда в него ведут дороги, и суммарное число жителей в городах, куда ведут дороги из него. Докажите, что хотя бы для одного города первое число оказалось не меньше второго.
В компании из шести человек любые пять могут сесть за круглый стол так, что каждые два соседа окажутся знакомыми.
Докажите, что и всю компанию можно усадить за круглый стол так, что каждые два соседа окажутся знакомыми.
|
|
|
Сложность: 3+ Классы: 10,11
|
На новогодний вечер пришли несколько супружеских пар, у каждой из которых было от 1 до 10 детей. Дед Мороз выбирал одного ребёнка, одну маму и одного папу из трёх разных семей и катал их в санях. Оказалось, что у него было ровно 3630 способов выбрать нужную тройку людей. Сколько всего могло быть детей на этом
вечере?
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 1023]