ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 161]      



Задача 109638

Темы:   [ Покрытия ]
[ Шахматная раскраска ]
[ Подсчет двумя способами ]
[ Геометрия на клетчатой бумаге ]
Сложность: 5-
Классы: 8,9,10

Можно ли прямоугольник 5×7 покрыть уголками из трех клеток (т.е. фигурками, которые получаются из квадрата 2×2 удалением одной клетки), не выходящими за его пределы, в несколько слоев так, чтобы каждая клетка прямоугольника была покрыта одинаковым числом клеток, принадлежащих уголкам?
Прислать комментарий     Решение


Задача 79598

Темы:   [ Куб ]
[ Шахматная раскраска ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 8,9,10,11

Куб размером 10×10×10 сложен из 500 чёрных и 500 белых кубиков в шахматном порядке (кубики, примыкающие друг к другу гранями, имеют различные цвета). Из этого куба вынули 100 кубиков так, чтобы в каждом из 300 рядов размером 1×1×10, параллельных какому-нибудь ребру куба, не хватало ровно одного кубика. Докажите, что число вынутых чёрных кубиков делится на 4.
Прислать комментарий     Решение


Задача 109755

Темы:   [ Ориентированные графы ]
[ Вспомогательная раскраска (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Автор: Пастор А.

В городе несколько площадей. Некоторые пары площадей соединены улицами с односторонним движением так, что с каждой площади можно выехать ровно по двум улицам. Докажите, что город можно разделить на 1014 районов так, чтобы улицами соединялись только площади из разных районов, и для каждых двух районов все соединяющие их улицы были направлены одинаково (либо все из первого района во второй, либо наоборот).

Прислать комментарий     Решение

Задача 116640

Темы:   [ Теория графов (прочее) ]
[ Вспомогательная раскраска (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 8,9,10

Назовём компанию k-неразбиваемой, если при любом разбиении её на k групп в одной из групп найдутся два знакомых человека. Дана 3-неразбиваемая компания, в которой нет четырёх попарно знакомых человек. Докажите, что её можно разделить на две компании, одна из которых 2-неразбиваемая, а другая – 1-неразбиваемая.

Прислать комментарий     Решение

Задача 30764

Темы:   [ Инварианты ]
[ Вспомогательная раскраска ]
Сложность: 5
Классы: 8,9

Можно ли доску размерами 4 × N обойти ходом коня, побывав на каждом поле ровно один раз, и вернуться на исходное поле?

Прислать комментарий     Решение

Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .