ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 161]      



Задача 60635

Темы:   [ Четность и нечетность ]
[ Обход графов ]
[ Шахматная раскраска ]
Сложность: 3
Классы: 8,9

Представим себе большой куб, склеенный из 27 меньших кубиков. Термит садится на центр грани одного из наружных кубиков и начинает прогрызать ход. Побывав в кубике, термит к нему уже не возвращается. Движется он при этом всегда параллельно какому-нибудь ребру большого куба. Может ли термит прогрызть все 26 внешних кубиков и закончить свой ход в центральном кубике? Если возможно, покажите, каким должен быть путь термита.

Прислать комментарий     Решение

Задача 115493

Темы:   [ Подсчет двумя способами ]
[ Разбиения на пары и группы; биекции ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 3
Классы: 6,7,8

На столе в виде треугольника выложены 28 монет одинакового размера (рис.). Известно, что суммарная масса любой тройки монет, которые попарно касаются друг друга, равна 10  г. Найдите суммарную массу всех 18  монет на границе треугольника.


Прислать комментарий     Решение

Задача 58182

Темы:   [ Четность и нечетность ]
[ Замощения костями домино и плитками ]
[ Шахматная раскраска ]
Сложность: 3+
Классы: 7,8,9

Докажите, что доску размером 10×10 клеток нельзя разрезать на фигурки в форме буквы T, состоящие из четырёх клеток.

Прислать комментарий     Решение

Задача 78246

Темы:   [ Четность и нечетность ]
[ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
[ Обход графов ]
Сложность: 3+
Классы: 7,8,9

Дана ладья, которой разрешается делать ходы только длиной в одну клетку. Доказать, что она может обойти все клетки прямоугольной шахматной доски, побывав на каждой клетке ровно один раз, и вернуться в начальную клетку тогда и только тогда, когда число клеток на доске чётно.

Прислать комментарий     Решение

Задача 79606

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Шахматная раскраска ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 7,8,9

Может ли во время шахматной партии на каждой из 30 диагоналей оказаться нечётное число фигур?

Прислать комментарий     Решение

Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 161]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .