Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 161]
|
|
Сложность: 3+ Классы: 5,6,7,8
|
Все поля шахматной доски 8×8 покрыли 32 косточками домино (каждая
косточка закрывает в точности два поля).
Докажите, что число вертикально лежащих косточек чётно.
Круг разделён на шесть секторов, в каждом из которых лежит по селёдке. Разрешается за один ход передвинуть любые две селёдки в соседних секторах, двигая их в разные стороны. Можно ли с помощью этой операции собрать все селёдки в одном секторе?
|
|
Сложность: 3+ Классы: 10,11
|
Тремя бесконечными сериями равноотстоящих параллельных прямых плоскость
разбита на равносторонние треугольники со стороной 1.
M – множество всех их вершин. A и B – две вершины одного треугольника. Разрешается поворачивать плоскость на 120° вокруг любой из вершин множества M. Можно ли за несколько таких преобразований перевести точку A в точку B?
|
|
Сложность: 3+ Классы: 7,8,9
|
Четыре кузнечика сидели в вершинах квадрата. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то векторы и равны). Докажите, что три кузнечика не могут оказаться
а) на одной прямой, параллельной стороне квадрата;
б) на одной произвольной прямой.
|
|
Сложность: 3+ Классы: 9,10,11
|
В клетки таблицы 100×100 записаны ненулевые цифры. Оказалось, что все 100 стозначных чисел, записанных по горизонтали, делятся на 11. Могло ли так оказаться, что ровно 99 стозначных чисел, записанных по вертикали, также делятся на 11?
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 161]