Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 161]
|
|
Сложность: 4- Классы: 7,8,9
|
В одной вершине куба написано число 1, а в остальных – нули. Можно прибавлять по единице к числам в концах любого ребра.
Можно ли добиться, чтобы все числа делились а) на 2; б) на 3?
Числа от 1 до 1000 расставлены по окружности.
Доказать, что их можно соединить 500 непересекающимися отрезками, разность чисел на концах которых (по модулю) не более 749.
|
|
Сложность: 4- Классы: 8,9,10
|
В ячейки куба 11×11×11 поставлены по одному числа 1, 2, ..., 1331. Из одного углового кубика в противоположный угловой отправляются два червяка. Каждый из них может проползать в соседний по грани кубик, при этом первый может проползать, если число в соседнем кубике отличается на 8, второй – если отличается на 9. Существует ли такая расстановка чисел, что оба червяка смогут добраться до противоположного углового кубика?
|
|
Сложность: 4 Классы: 8,9,10
|
В каждой вершине выпуклого 100-угольника написано по два различных числа.
Докажите, что можно вычеркнуть по одному числу в каждой вершине так,
чтобы оставшиеся числа в каждых двух соседних вершинах были различными.
Восемь клеток одной диагонали шахматной доски назовём забором. Ладья ходит по доске, не наступая на одну и ту же клетку дважды и не наступая на клетки забора (промежуточные клетки не считаются посещёнными). Какое наибольшее число прыжков через забор может совершить ладья?
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 161]