Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 161]
Школьник хочет вырезать из квадрата размером
2
n×2
n наибольшее
количество прямоугольников размером
1×(
n + 1). Найти это количество для
каждого натурального значения
n.
|
|
Сложность: 5- Классы: 9,10,11
|
Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.
|
|
Сложность: 5- Классы: 9,10,11
|
В стране 2000 городов, некоторые пары городов соединены дорогами. Известно, что через любой город проходит не более N различных несамопересекающихся циклических маршрутов нечётной длины. Докажите, что страну можно разделить на 2N + 2 республики так, чтобы никакие два города из одной республики не были соединены дорогой.
|
|
Сложность: 5- Классы: 9,10,11
|
В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет.
|
|
Сложность: 5 Классы: 9,10,11
|
На плоскости нарисована замкнутая самопересекающаяся ломаная. Она пересекает каждое свое звено ровно один раз, причём через каждую точку самопересечения проходят ровно два звена. Может ли каждая точка самопересечения делить оба этих звена пополам? (Нет самопересечений в вершинах и звеньев с общим отрезком.)
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 161]