Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 829]
|
|
Сложность: 3 Классы: 10,11
|
Можно ли все прямые на плоскости разбить на пары перпендикулярных прямых?
|
|
Сложность: 3 Классы: 7,8,9
|
На сторонах AC и BC треугольника ABC выбраны точки M и N соответственно так, что MN || AB. На стороне AC отмечена точка K так, что CK = AM. Отрезки AN и BK пересекаются в точке F. Докажите, что площади треугольника ABF и четырёхугольника KFNC равны.
|
|
Сложность: 3 Классы: 5,6,7
|
Внутри угла AOB, равного 120°, проведены лучи OC и OD
так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.
|
|
Сложность: 3 Классы: 10,11
|
Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что MK = KN.
|
|
Сложность: 3 Классы: 5,6,7
|
В треугольнике ABC на стороне AB выбрана точка K и проведены биссектриса KE треугольника AKC и высота KH треугольника BKC. Оказалось, что угол EKH – прямой. Найдите BC, если HC = 5.
Страница:
<< 15 16 17 18
19 20 21 >> [Всего задач: 829]