Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 211]
|
|
Сложность: 3+ Классы: 8,9,10
|
В остроугольный треугольник вписана окружность радиуса R. К окружности проведены три касательные, разбивающие треугольник на три прямоугольных треугольника и шестиугольник. Периметр шестиугольника равен Q. Найдите сумму диаметров окружностей, вписанных в прямоугольные треугольники.
|
|
Сложность: 3+ Классы: 8,9,10
|
Стороны треугольника равны 17, 17, 30. Найдите радиусы вписанной и вневписанных окружностей.
|
|
Сложность: 3+ Классы: 8,9,10
|
Стороны треугольника равны 16, 10, 10. Найдите радиусы вписанной и вневписанных окружностей.
Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.
|
|
Сложность: 4- Классы: 8,9,10
|
Три попарно непересекающиеся окружности ωx, ωy, ωz радиусов rx, ry, rz лежат по одну сторону от прямой t и касаются её в точках X, Y, Z соответственно. Известно, что Y – середина отрезка XZ, rx = rz = r, а ry > r. Пусть p – одна из общих внутренних касательных к окружностям ωx и ωy, а q – одна из общих внутренних касательных к окружностям ωy и ωz. В пересечении прямых p, q, t образовался неравнобедренный треугольник. Докажите, что радиус его вписанной окружности равен r.
Страница:
<< 36 37 38 39
40 41 42 >> [Всего задач: 211]