Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан описанный четырёхугольник. Точки касания его вписанной окружности со сторонами последовательно соединены отрезками. В получившиеся треугольники вписаны окружности. Докажите, что диагонали четырёхугольника с вершинами в центрах этих окружностей взаимно перпендикулярны.
|
|
Сложность: 3+ Классы: 8,9,10
|
Диагонали параллелограмма ABCD пересекаются в точке O. Касательная, проведённая к описанной окружности треугольника BOC в точке O, пересекает луч CB в точке F. Описанная окружность треугольника FOD повторно пересекает прямую BC в точке G. Докажите, что AG = AB.
Четырёхугольник ABCD, в котором AB = BC и AD = CD, вписан в окружность. Точка M лежит на меньшей дуге CD этой окружности. Прямые BM и CD пересекаются в точке P, а прямые AM и BD – в точке Q. Докажите, что PQ || AC.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В параллелограмме $ABCD$ угол $A$ острый. На стороне $AB$ отмечена такая точка $N$, что $CN = AB$. Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.
|
|
Сложность: 3+ Классы: 7,8,9
|
Треугольники ABC и A1B1C1 – равнобедренные прямоугольные (стороны AB
и A1B1 – гипотенузы). Известно,
что C1 лежит на BC, B1 лежит на AB, а A1 лежит на AC. Докажите, что AA1 = 2CC1.
Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 501]