ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1024]      



Задача 35559

Тема:   [ Общая касательная к двум окружностям ]
Сложность: 2+
Классы: 8,9

На плоскости нарисованы две окружности (см. рис.). Существует ли некоторая точка, лежащая вне каждой из этих окружностей, для которой любая прямая, проходящая через неё, пересекает хотя бы одну из окружностей?

Прислать комментарий     Решение

Задача 52601

Темы:   [ Окружность, вписанная в угол ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Из концов дуги в 200° проведены касательные до взаимного пересечения. Найдите угол между ними.

Прислать комментарий     Решение

Задача 52602

Темы:   [ Окружность, вписанная в угол ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Угол между двумя касательными, проведёнными из одной точки к окружности, равен 70°.
Найдите угловые величины дуг, заключённых между точками касания.

Прислать комментарий     Решение

Задача 52603

Темы:   [ Окружность, вписанная в угол ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 2+
Классы: 8,9

Хорда делит окружность в отношении 11 : 16. Найдите угол между касательными, проведёнными из концов этой хорды.

Прислать комментарий     Решение

Задача 52884

Темы:   [ Признаки и свойства касательной ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 2+
Классы: 8,9

К окружности радиуса 36 проведена касательная из точки, удаленной от центра на расстояние, равное 85. Найдите длину касательной.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1024]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .