Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 772]
Дан треугольник со сторонами 10, 24 и 26. Две меньшие стороны являются касательными к окружности, центр которой лежит на большей стороне.
Найдите радиус окружности.
На окружности радиуса 12 с центром в точке O лежат точки A и
B. Прямые AC и BC касаются этой окружности. Другая окружность с центром в точке M вписана в треугольник ABC и касается стороны
AC в точке K, а стороны BC – в точке H. Расстояние от точки M до прямой KH равно 3. Найдите ∠AOB.
Около окружности описана равнобедренная трапеция ABCD. Боковая сторона AB касается окружности в точке M, а основание AD – в точке N. Отрезки MN и AC пересекаются в точке P, причём NP : PM = 2. Найдите отношение AD : BC.
Около окружности описана равнобедренная трапеция ABCD. Меньшее основание BC касается окружности в точке M, боковая сторона CD – в точке N. Высота CE пересекает отрезок MN в точке P, причём MP : PN = 2. Найдите отношение AD : BC.
Центр O окружности радиуса 3 лежит на гипотенузе AC прямоугольного треугольника ABC. Катеты треугольника касаются окружности.
Найдите площадь треугольника ABC, если известно, что OC = 5.
Страница: << 111 112 113 114 115 116 117 >> [Всего задач: 772]