Страница:
<< 31 32 33 34 35
36 37 >> [Всего задач: 181]
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости провели несколько окружностей и отметили все точки их пересечения или касания. Может ли оказаться, что на каждой окружности лежат ровно пять отмеченных точек, а через каждую отмеченную точку проходят ровно пять окружностей?
Доказать, что cos 2π/5 + cos 4π/5 = – ½.
|
|
Сложность: 4 Классы: 8,9,10
|
В некоторой стране 1985 аэродромов. С каждого из них вылетел самолёт и
приземлился на самом удалённом от места старта аэродроме. Могло ли случиться,
что в результате все 1985 самолётов оказались на 50 аэродромах? (Землю можно
считать плоской, а маршруты прямыми; попарные расстояния между аэродромами предполагаются различными.)
Точки сторон правильного треугольника раскрашены в два цвета. Докажите, что найдётся прямоугольный треугольник с вершинами одного цвета.
|
|
Сложность: 5 Классы: 9,10,11
|
В равнобедренном треугольнике ABC ∠ABC = 20°. На равных сторонах CB и AB взяты соответственно точки P и Q так, что ∠PAC = 50° и ∠QCA = 60°.
Докажите, что ∠PQC = 30°.
Страница:
<< 31 32 33 34 35
36 37 >> [Всего задач: 181]