Страница: 1
2 3 >> [Всего задач: 12]
Из точки
M, лежащей на стороне
AB остроугольного треугольника
ABC, опущены перпендикуляры
MP и
MQ на стороны
BC и
AC.
При каком положении точки
M длина отрезка
PQ минимальна?
|
|
Сложность: 3 Классы: 8,9,10
|
Дан треугольник
ABC. Найдите на прямой
AB точку
M, для которой
сумма радиусов описанных окружностей треугольников
ACM и
BCM
была бы наименьшей.
Докажите, что сумма квадратов расстояний от точки
M до вершин треугольника
минимальна, если
M – точка пересечения медиан треугольника.
На гипотенузе AB прямоугольного треугольника ABC взята точка X, M и N – её проекции на катеты AC и BC.
а) При каком положении точки X длина отрезка MN будет наименьшей?
б) При каком положении точки X площадь четырёхугольника CMXN
будет наибольшей?
Из точки
M описанной окружности треугольника
ABC опущены
перпендикуляры
MP и
MQ на прямые
AB и
AC. При каком
положении точки
M длина отрезка
PQ максимальна?
Страница: 1
2 3 >> [Всего задач: 12]