Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 330]
На стороне BC треугольника ABC выбрана точка L так, что AL в два раза больше медианы CM. Оказалось, что угол ALC равен 45°.
Докажите, что AL и CM перпендикулярны.
|
|
Сложность: 3+ Классы: 8,9,10
|
В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны.
|
|
Сложность: 3+ Классы: 8,9,10
|
Дан треугольник ABC. Прямая, параллельная AC, пересекает стороны AB и BC в точках P и T соответственно, а медиану AM – в точке Q. Известно, что PQ = 3, а QT = 5. Найдите длину AC.
На стороне AB треугольника ABC отметили точки K и L так, что KL = BC и AK = LB.
Докажите, что отрезок KL виден из середины M стороны AC под прямым углом.
На стороне AB треугольника ABC отмечена точка K так, что AB = CK. Точки N и M – середины отрезков AK и BC соответственно. Отрезки NM и CK пересекаются в точке P. Докажите, что KN = KP.
Страница:
<< 7 8 9 10
11 12 13 >> [Всего задач: 330]