Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1224]      



Задача 98184

Темы:   [ Сочетания и размещения ]
[ Подсчет двумя способами ]
[ Неравенство Коши ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5-
Классы: 8,9,10

В ботаническом справочнике каждое растение характеризуется 100 признаками (каждый признак либо присутствует, либо отсутствует). Растения считаются непохожими, если они различаются не менее, чем по 51 признаку.
  а) Покажите, что в справочнике не может находиться больше 50 попарно непохожих растений.
  б) А может ли быть ровно 50?

Прислать комментарий     Решение

Задача 109706

Темы:   [ Теория игр (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 5-
Классы: 7,8,9

В микросхеме 2000 контактов, первоначально любые два контакта соединены отдельным проводом. Хулиганы Вася и Петя по очереди перерезают провода, причем Вася (он начинает) за ход режет один провод, а Петя – либо один, либо три провода. Хулиган, отрезающий последний провод от какого-либо контакта, проигрывает. Кто из них выигрывает при правильной игре?
Прислать комментарий     Решение


Задача 109771

Темы:   [ Процессы и операции ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 8,9,10

Имеются одна красная и k  (k > 1)  синих ячеек, а также колода из 2n карт, занумерованных числами от 1 до 2n. Первоначально вся колода лежит в произвольном порядке в красной ячейке. Из любой ячейки можно взять верхнюю карту и переложить её либо в пустую ячейку, либо поверх карты с номером, большим на единицу. При каком наибольшем n можно такими операциями переложить всю колоду в одну из синих ячеек?

Прислать комментарий     Решение

Задача 110076

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
[ Последовательности (прочее) ]
Сложность: 5-
Классы: 9,10,11

Саша написал на доске ненулевую цифру и приписывает к ней справа по одной ненулевой цифре, пока не выпишет миллион цифр. Докажите, что на доске не более 100 раз был написан точный квадрат.
Прислать комментарий     Решение


Задача 111695

Темы:   [ Теория алгоритмов (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Индукция (прочее) ]
[ Четность и нечетность ]
Сложность: 5-
Классы: 9,10,11

Тест состоит из 30 вопросов, на каждый есть два варианта ответа (один верный, другой нет). За одну попытку Витя отвечает на все вопросы, после чего ему сообщают, на сколько вопросов он ответил верно. Сможет ли Витя действовать так, чтобы гарантированно узнать все верные ответы не позже, чем
  а) после 29-й попытки (и ответить верно на все вопросы при 30-й попытке);
  б) после 24-й попытки (и ответить верно на все вопросы при 25-й попытке)?
(Изначально Витя не знает ни одного ответа, тест всегда один и тот же.)

Прислать комментарий     Решение

Страница: << 152 153 154 155 156 157 158 >> [Всего задач: 1224]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .