Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]      



Задача 108853

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

Найдите наибольший возможный угол между плоскостью боковой грани и не принадлежащим ей боковым ребром правильной четырёхугольной пирамиды.
Прислать комментарий     Решение


Задача 108855

Темы:   [ Задачи на максимум и минимум (прочее) ]
[ Правильная пирамида ]
Сложность: 4
Классы: 8,9

В правильной шестиугольной пирамиде SABCDEF найдите наибольший возможный угол между прямой SA и плоскостью SBC .
Прислать комментарий     Решение


Задача 109201

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана сфера. Сторона основания пирамиды равна 6, а высота пирамиды равна 4. Точка E выбрана на ребре SC , причём SE=SC , а точка F является ортогональной проекцией точки E на плоскость ABCD . Через точку E проведена касательная к сфере, пересекающая плоскость BSD в точке P , причём PEF = arccos . Найдите PE .
Прислать комментарий     Решение


Задача 109202

Темы:   [ Правильная пирамида ]
[ Сфера, вписанная в пирамиду ]
[ Касательные к сферам ]
Сложность: 4
Классы: 10,11

В правильную четырёхугольную пирамиду SABCD ( S – вершина) вписана сфера. Сторона основания пирамиды равна 8, а высота пирамиды равна 3. Точка M – середина ребра SD , а точка K является ортогональной проекцией точки M на плоскость ABCD . Через точку M проведена касательная к сфере, пересекающая плоскость ASC в точке N , причём NMK = arccos (-) . Найдите NM .
Прислать комментарий     Решение


Задача 109260

Темы:   [ Ортоцентрический тетраэдр ]
[ Сфера, касающаяся ребер или сторон пирамиды ]
[ Достроение тетраэдра до параллелепипеда ]
Сложность: 4
Классы: 10,11

Все ребра треугольной пирамиды ABCD касаются некоторого шара. Три отрезка, соединяющие середины скрещивающихся рёбер AB и CD , AC и BD , AD и BC , равны между собой, ABC = 100o . Найдите отношение высот, опущенных из вершин A и B .
Прислать комментарий     Решение


Страница: << 80 81 82 83 84 85 86 >> [Всего задач: 540]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .