Страница:
<< 219 220 221 222
223 224 225 >> [Всего задач: 1308]
|
|
Сложность: 4 Классы: 10,11
|
Петя и Вася играют в игру на клетчатой доске n×n (где n > 1). Изначально вся доска белая, за исключением угловой клетки – она чёрная, и в ней стоит ладья. Игроки ходят по очереди. Каждым ходом игрок передвигает ладью по горизонтали или вертикали, при этом все клетки, через которые ладья перемещается (включая ту, в которую она попадает), перекрашиваются в чёрный цвет. Ладья не должна передвигаться через чёрные клетки или останавливаться на них. Проигрывает тот, кто не может сделать ход; первым ходит Петя. Кто выиграет при правильной игре?
|
|
Сложность: 4 Классы: 9,10,11
|
Император пригласил на праздник 2015 волшебников, некоторые из которых добрые, а остальные злые. Добрый волшебник всегда говорит правду, а злой может говорить что угодно. При этом волшебники знают, кто добрый и кто злой, а император нет. На празднике император задаёт каждому волшебнику (в каком хочет порядке) по вопросу, на которые можно ответить "да" или "нет". Опросив всех волшебников, император изгоняет одного. Изгнанный волшебник выходит в заколдованную дверь, и император узнаёт, добрый он был или злой. Затем император вновь задает каждому из оставшихся волшебников по вопросу, вновь одного изгоняет, и так далее, пока император не решит остановиться (он может это сделать после любого вопроса). Докажите, что император может изгнать всех злых волшебников, удалив при этом не более одного доброго.
|
|
Сложность: 4 Классы: 9,10,11
|
На соревнованиях по фигурному велосипедированию было 100 судей. Каждый судья упорядочил всех участников (от лучшего по его мнению – к худшему). Оказалось, что ни для каких трёх участников A, B, C не нашлось
трёх судей, один из которых считает, что A – лучший из трёх, а B – худший, другой – что B лучший, а C худший, а третий – что C лучший, а A худший. Докажите, что можно составить общий рейтинг участников так, чтобы для каждых двух участников A и B тот, кто выше в рейтинге, был бы лучше другого по мнению хотя бы половины судей.
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть A – угловая клетка шахматной доски, B – соседняя с ней по диагонали клетка. Докажите, что число способов обойти всю доску хромой ладьей (ходит на одну клетку по вертикали или горизонтали), начиная с клетки A, больше, чем число способов обойти всю доску хромой ладьей, начиная с клетки B. (Ладья должна побывать на каждой клетке ровно один раз.)
|
|
Сложность: 4 Классы: 9,10,11
|
В стране 64 города, некоторые пары из них соединены дорогой, но нам неизвестно, какие именно. Можно выбрать любую пару городов и получить ответ на вопрос “есть ли дорога между ними?”. Нужно узнать, можно ли в этой стране добраться от любого города до любого другого, двигаясь по дорогам. Докажите, что не существует алгоритма, позволяющего сделать это менее чем за 2016 вопросов.
Страница:
<< 219 220 221 222
223 224 225 >> [Всего задач: 1308]