ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал сумму чисел, написанных около её строки и её столбца ("таблица сложения"). Какое наибольшее количество сумм в этой таблице могли оказаться рациональными числами? Найдите периметр треугольника ABC, если известны координаты его вершин A(–3, 5), B(3, –3) и точки M(6, 1), являющейся серединой стороны BC. |
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 258]
На стороне AD выпуклого четырёхугольника ABCD нашлась такая точка M, что CM и BM параллельны AB и CD соответственно.
Площадь треугольника ABC равна 10 см². Какое наименьшее значение может принимать радиус описанной окружности треугольника ABC, если известно, что середины высот этого треугольника лежат на одной прямой?
Доказать, что каковы бы ни были числа a, b, c, по крайней мере одно из уравнений
а) Какое наибольшее число рёбер может быть в 30-вершинном графе, в котором нет треугольников?
Дана таблица n×n, заполненная числами по следующему правилу: в клетке, стоящей в i-й строке и j-м столбце таблицы записано число
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 258]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке