Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 161]
Участок m×n. Прямоугольный участок размера
m×
n разбит на квадраты 1×1. Каждый квадрат является отдельным участком, соединенным калитками с соседними участками. При каких размерах участка можно обойти все квадратные участки, побывав в каждом по одному разу, и вернуться в первоначальный?
|
|
Сложность: 2+ Классы: 7,8,9
|
На столе рубашкой вниз лежит игральная карта. Можно ли, перекатывая ее по столу через ребро, добиться того, чтобы она оказалась на прежнем месте, но
а) рубашкой вверх;
б) рубашкой вниз и вверх ногами?
|
|
Сложность: 3- Классы: 5,6,7
|
Можно ли ходом коня обойти все клетки шахматной доски, начав с клетки
а1, закончив в клетке
h8 и на каждой клетке доски побывав ровно один раз?
|
|
Сложность: 3 Классы: 7,8,9,10,11
|
На доске размером 8×8 в углу расставлены 9 фишек в форме квадрата 3×3. Любая фишка может прыгать через другую фишку на свободную клетку (по горизонтали, вертикали или диагонали). Можно ли за некоторое количество прыжков расставить фишки в форме такого же квадрата в каком-либо другом углу доски?
[Игра "кошки-мышки"]
|
|
Сложность: 3 Классы: 7,8,9
|
Кошка ловит мышку в лабиринтах А, Б, В. Кошка ходит первой, начиная с узла, отмеченного буквой "К". Затем ходит мышка (из узла "М"), затем опять кошка и т. д. Из любого узла кошка и мышка ходят в любой соседний узел. Если в какой-то момент кошка и мышка оказываются в одном узле, кошка ест мышку. Сможет ли кошка поймать мышку в каждом из случаев А, Б, В?
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 161]