Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 1110]
|
|
Сложность: 3+ Классы: 7,8,9
|
Клетки квадратной таблицы 15×15 раскрашены в красный, синий и зелёный цвета.
Докажите, что найдутся, по крайней мере, две строки, в которых клеток хотя бы одного цвета поровну.
[Убегающий ученик]
|
|
Сложность: 3+ Классы: 7,8
|
В центре круглого бассейна плавает ученик. Внезапно к бассейну подошёл учитель. Учитель не умеет плавать, но бегает в 4 раза быстрее, чем ученик плавает. Ученик бегает быстрее. Сможет ли он убежать?
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что число способов расставить на шахматной доске максимальное число ферзей чётно.
Петя и Витя ехали вниз по эскалатору. Посередине эскалатора хулиган Витя сорвал с Пети шапку и бросил её на встречный эскалатор. Пострадавший Петя побежал обратно вверх по эскалатору, чтобы затем спуститься вниз и вернуть шапку. Хитрый Витя побежал по эскалатору вниз, чтобы затем подняться вверх и успеть раньше Пети. Кто успеет раньше, если скорости ребят относительно эскалатора постоянны и не зависят от направления движения?
В честь праздника 1% солдат в полку получил новое обмундирование. Солдаты
расставлены в виде прямоугольника так, что солдаты в новом обмундировании
оказались не менее чем в 30% колонн и не менее чем в 40% шеренг. Какое
наименьшее число солдат могло быть в полку?
Страница:
<< 92 93 94 95
96 97 98 >> [Всего задач: 1110]