ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 603]      



Задача 108152

Темы:   [ Средняя линия треугольника ]
[ Две касательные, проведенные из одной точки ]
[ Вписанные и описанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 4-
Классы: 8,9

Вписанная окружность треугольника ABC  (AB > BC)  касается сторон AB и AC в точках P и Q соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.

Прислать комментарий     Решение

Задача 108163

Темы:   [ Признаки и свойства параллелограмма ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём  ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.

Прислать комментарий     Решение

Задача 108184

Темы:   [ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

Прислать комментарий     Решение

Задача 108643

Темы:   [ Вспомогательная окружность ]
[ Вспомогательные равные треугольники ]
[ Вписанные четырехугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В выпуклом четырёхугольнике ABCD известно, что  ∠A + ∠D = 120°  и  AB = BC = CD.
Докажите, что точка пересечения диагоналей равноудалена от вершин A и D.

Прислать комментарий     Решение

Задача 54333

Темы:   [ Вспомогательная окружность ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4
Классы: 8,9

В трапеции MNPQ  (MQ || NP )  угол NQM в два раза меньше угла MPN. Известно, что  NP = MP = 13/12MQ = 12.  Найдите площадь трапеции.

Прислать комментарий     Решение

Страница: << 107 108 109 110 111 112 113 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .