Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 110 111 112 113 114 115 116 >> [Всего задач: 604]      



Задача 108217

Темы:   [ Поворотная гомотетия ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 9,10,11

Серединный перпендикуляр к стороне AC треугольника ABC пересекает сторону BC в точке M. Биссектриса угла AMB пересекает описанную окружность треугольника ABC в точке K. Докажите, что прямая, проходящая через центры вписанных окружностей треугольников AKM и BKM, перпендикулярна биссектрисе угла AKB.

Прислать комментарий     Решение

Задача 116901

Темы:   [ Ортоцентр и ортотреугольник ]
[ Свойства симметрий и осей симметрии ]
[ Ромбы. Признаки и свойства ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4+
Классы: 8,9

Высоты AA1, CC1 остроугольного треугольника ABC пересекаются в точке H. Точка Q симметрична середине стороны AC относительно AA1. Точка P – середина отрезка A1C1. Докажите, что  ∠QPH = 90°.

Прислать комментарий     Решение

Задача 66161

Темы:   [ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
[ Три прямые, пересекающиеся в одной точке ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Величина угла между двумя хордами и двумя секущими ]
[ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
Сложность: 5-
Классы: 9,10,11

Неравнобедренный треугольник ABC вписан в окружность с центром O и описан около окружности с центром I. Точка B', симметричная точке B относительно прямой OI, лежит внутри угла ABI. Докажите, что касательные к описанной окружности треугольника BB'I, проведённые в точках B' и I, пересекаются на прямой AC.

Прислать комментарий     Решение

Задача 108248

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Вписанный угол равен половине центрального ]
[ Биссектриса угла (ГМТ) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 5-
Классы: 8,9,10

В выпуклом четырёхугольнике ABCD провели биссектрисы la, lb, lc и ld внешних углов при вершинах A, B, C и D соответственно. Точки пересечения прямых la и lb, lb и lc, lc и ld, ld и la обозначили через K, L, M и N. Известно, что три перпендикуляра, опущенных из точки K на AB, из L на BC, из M на CD пересекаются в одной точке. Докажите, что четырёхугольник ABCD – вписанный.

Прислать комментарий     Решение

Задача 108887

Темы:   [ Вспомогательные равные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

Прислать комментарий     Решение

Страница: << 110 111 112 113 114 115 116 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .