Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 181]
В вершинах правильного 1983-угольника расставлены числа 1, 2, ..., 1983.
Любая его ось симметрии делит числа, не лежащие на ней, на два множества. Назовём расстановку "хорошей" относительно данной оси симметрии, если каждое число одного множества больше симметричного ему числа. Существует ли расстановка, являющаяся "хорошей" относительно любой оси симметрии?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Даны n точек на плоскости, никакие три из которых не лежат на одной прямой. Через каждую пару точек проведена прямая. Какое минимальное число попарно
непараллельных прямых может быть среди них?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В турнире по теннису n участников хотят провести парные (двое на двое) матчи так, чтобы каждый из участников имел своим противником каждого из остальных ровно в одном матче. При каких n возможен такой турнир?
|
|
Сложность: 4 Классы: 7,8,9,10
|
Дан набор одинаковых правильных пятиугольников, при вершинах каждого из которых записаны натуральные числа от 1 до 5, как показано на рисунке. Пятиугольники можно поворачивать и переворачивать. Их сложили в стопку (вершина к вершине), и оказалось, что при каждой из пяти вершин суммы чисел одинаковы. Сколько пятиугольников могло быть в этой стопке?
|
|
Сложность: 5- Классы: 10,11
|
Докажите, что при n ≥ 5 сечение пирамиды, в основании которой лежит правильный n-угольник, не может являться правильным (n+1)-угольником.
Страница:
<< 28 29 30 31
32 33 34 >> [Всего задач: 181]