Страница:
<< 223 224 225 226
227 228 229 >> [Всего задач: 1308]
|
|
Сложность: 4 Классы: 8,9,10,11
|
На доске написано n выражений вида *x² + *x + * = 0 (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?
|
|
Сложность: 4 Классы: 7,8,9
|
Из квадратной доски 1000×1000 клеток удалены четыре прямоугольника 2×994 (см. рис.).
На клетке, помеченной звездочкой, стоит
кентавр – фигура, которая за один ход может перемещаться на одну клетку вверх, влево или по диагонали вправо и вверх. Двое игроков ходят кентавром по очереди. Проигрывает тот, кто не может сделать очередной ход. Кто выигрывает при правильной игре?
|
|
Сложность: 4 Классы: 8,9,10
|
а) В городе Мехико для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Семье требуется каждый день иметь в распоряжении не менее десяти машин. Каким наименьшим количеством машин может обойтись семья, если её члены могут сами выбирать запрещенные дни для своих автомобилей?
б) В Мехико для каждой частной автомашины устанавливается один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из десяти человек подкупила полицию, и для каждой машины они называют два дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество
машин нужно купить семье, чтобы каждый день каждый член семьи мог
самостоятельно ездить, если утверждение невыездных дней для автомобилей идёт последовательно?
|
|
Сложность: 4 Классы: 8,9,10
|
Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре?
|
|
Сложность: 4 Классы: 9,10,11
|
Андрей и Борис играют в следующую игру. Изначально на числовой
прямой в точке
p стоит робот. Сначала Андрей говорит расстояние,
на которое должен сместиться робот. Потом Борис выбирает
направление, в котором робот смещается на это расстояние, и т.д. При каких
p Андрей может добиться того, что за конечное
число ходов робот попадет в одну из точек 0 или 1 вне
зависимости от действий Бориса?
Страница:
<< 223 224 225 226
227 228 229 >> [Всего задач: 1308]