Страница:
<< 225 226 227 228
229 230 231 >> [Всего задач: 1308]
|
|
Сложность: 4+ Классы: 8,9,10,11
|
На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?
|
|
Сложность: 4+ Классы: 8,9,10
|
Найти наименьшее
n такое, что любой выпуклый 100-угольник можно получить в
виде пересечения
n треугольников. Докажите, что для меньших
n это можно
сделать не с любым выпуклым 100-угольником.
|
|
Сложность: 4+ Классы: 8,9,10,11
|
64 друга одновременно узнали 64 новости, причём каждый узнал одну новость. Они стали звонить друг другу и обмениваться новостями. Каждый разговор длится 1 час. Какое минимальное количество часов необходимо, чтобы все узнали все новости? (Во время одного разговора можно передать сколько угодно новостей.)
|
|
Сложность: 4+ Классы: 8,9,10
|
Дан 101 прямоугольник с целыми сторонами, не превышающими 100.
Докажите, что среди них найдутся три прямоугольника A, B, C, которые можно поместить друг в друга (так что A ⊂ B ⊂ C).
|
|
Сложность: 4+ Классы: 10,11
|
На сфере отмечено пять точек, никакие три из которых не лежат на большой
окружности (большая окружность – это окружность, по которой пересекаются сфера и плоскость, проходящая через её центр). Две большие окружности, не проходящие через отмеченные точки, называются эквивалентными, если одну из них с помощью непрерывнвого перемещения по сфере можно перевести в другую так, что в процессе перемещения окружность не проходит через отмеченные точки.
а) Сколько можно нарисовать окружностей, не проходящих через
отмеченные точки и не эквивалентных друг другу?
б) Та же задача для n отмеченных точек.
Страница:
<< 225 226 227 228
229 230 231 >> [Всего задач: 1308]