Страница:
<< 11 12 13 14 15 16 17 [Всего задач: 83]
|
|
Сложность: 4+ Классы: 9,10,11
|
На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы
коротких палочек у букв ``Г'' обозначим через
A и
A'. Длинные палочки
разделены на
n равных частей точками
a1, ...,
an - 1;
a'1,
...,
a'n - 1 (точки деления нумеруются от концов длинных палочек).
Проводятся прямые
Aa1,
Aa2, ...,
Aan - 1;
A'a1,
A'a'2,
...,
A'a'n - 1. Точку пересечения прямых
Aa1 и
A'a1 обозначим
через
X1, прямых
Aa2 и
A'a2 — через
X2 и т.д. Доказать, что
точки
X1,
X2, ...,
Xn - 1 образуют выпуклый многоугольник.
Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.
В неравнобедренном треугольнике
ABC проведены медианы
AK и
BL . Углы
BAK и
CBL равны
30
o .
Найдите углы треугольника
ABC .
|
|
Сложность: 4 Классы: 9,10,11
|
Биссектрисы BB1 и CC1 треугольника ABC пересекаются в точке I. Прямая B1C1 пересекает описанную окружность треугольника ABC в точках M и N.
Докажите, что радиус описанной окружности треугольника MIN вдвое больше радиуса описанной окружности треугольника ABC.
Страница:
<< 11 12 13 14 15 16 17 [Всего задач: 83]