Страница:
<< 15 16 17 18 19 20 21 >> [Всего задач: 165]
|
|
Сложность: 4 Классы: 7,8,9
|
На доске написано число 0. Два игрока по очереди приписывают справа к выражению на доске:
первый – знак + или
- , второй – одно из натуральных чисел от 1 до 1993. Игроки делают
по 1993 хода, причем второй записывает каждое из чисел от 1 до 1993 ровно по одному разу. В конце
игры второй игрок получает выигрыш, равный модулю алгебраической суммы, написанной на доске. Какой
наибольший выигрыш он может себе гарантировать?
|
|
Сложность: 4 Классы: 7,8,9,10
|
На столе стоят три пустых банки из-под меда. Винни-Пух, Кролик и
Пятачок по очереди кладут по одному ореху в одну из банок. Их порядковые
номера до начала игры определяются жребием. При этом
Винни может добавлять орех только в первую или вторую банку, Кролик –
только во вторую или третью, а Пятачок – в первую или третью.
Тот, после
чьего хода в какой-нибудь банке оказалось ровно 1999 орехов,
проигрывает.
Докажите, что Винни-Пух и Пятачок могут, договорившись, играть
так, чтобы Кролик проиграл.
|
|
Сложность: 4 Классы: 7,8,9
|
В одном из узлов шестиугольника со стороной
n , разбитого на правильные
треугольники
(см. рис.) , стоит фишка. Двое играющих по очереди
передвигают ее в один из соседних узлов, причем запрещается ходить в узел,
в котором фишка уже побывала. Проигрывает тот, кто не может сделать хода.
Кто выигрывает при правильной игре?
|
|
Сложность: 4 Классы: 7,8,9
|
На столе лежат n спичек (n > 1). Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до n – 1, а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты,
и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
Страница:
<< 15 16 17 18 19 20 21 >> [Всего задач: 165]