ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 201]      



Задача 110081

Темы:   [ Свойства модуля. Неравенство треугольника ]
[ Уравнения с модулями ]
[ Системы линейных уравнений ]
Сложность: 3+
Классы: 8,9

Пусть a, b, c, d, e и f – некоторые числа, причём  ace ≠ 0.  Известно, что значения выражений  |ax + b| + |cx + d|  и  |ex + f |  равны при всех значениях x.
Докажите, что  ad = bc.

Прислать комментарий     Решение

Задача 35728

Темы:   [ Многочлен нечетной степени имеет действительный корень ]
[ Уравнение плоскости ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 10,11

Докажите, что в пространстве найдётся гладкая кривая, которая пересекается с каждой плоскостью.

Прислать комментарий     Решение

Задача 61106

Темы:   [ Многочлены Чебышева ]
[ Рекуррентные соотношения (прочее) ]
[ Уравнения высших степеней (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 9,10,11

Последовательность многочленов  P0(x) = 1,  P1(x) = xP2(x) = x² – 1, ...  задается условием  Pn+1(x) = xPn(x) – Pn–1(x).
Докажите, что уравнение  P100(x) = 0  имеет 100 различных действительных корней на отрезке  [–2, 2].  Что это за корни?

Прислать комментарий     Решение

Задача 66474

Темы:   [ Целая и дробная части. Принцип Архимеда ]
[ Алгебраические неравенства (прочее) ]
[ Алгебраические уравнения и системы уравнений (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Докажите, что для любых натуральных a1, a2, ..., ak таких, что , у уравнения не больше чем a1a2...ak решений в натуральных числах. ([x] – целая часть числа x, т. е. наибольшее целое число, не превосходящее x.)
Прислать комментарий     Решение


Задача 73712

Темы:   [ Иррациональные уравнения ]
[ Замена переменных (прочее) ]
[ Симметрические системы. Инволютивные преобразования ]
[ Симметрия и инволютивные преобразования ]
[ Методы решения задач с параметром ]
Сложность: 4+
Классы: 10,11

Автор: Темиров Т.

Пусть a – заданное вещественное число, n – натуральное число,  n > 1.
Найдите все такие x, что сумма корней n-й степени из чисел  xn – an  и  2an – xn  равна числу a.

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .