ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 737]      



Задача 98603

Темы:   [ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Внутренность и внешность. Лемма Жордана ]
[ Оценка + пример ]
Сложность: 4+
Классы: 9,10,11

а) Электрическая схема имеет вид решётки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от любого узла к любому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 7×7 (всего 64 узла).

Прислать комментарий     Решение

Задача 105180

Темы:   [ Кооперативные алгоритмы ]
[ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 8,9,10,11

Перед экстрасенсом лежит колода из 36 карт рубашкой вверх (4 масти, по 9 карт каждой масти). Он называет масть верхней карты, после чего карту открывают и показывают ему. После этого экстрасенс называет масть следующей карты и т. д. Задача экстрасенса – угадать масть как можно большее число раз. Рубашки карт несимметричны, и экстрасенс видит, в каком из двух положений лежит верхняя карта. Помощник экстрасенса знает порядок карт в колоде, не может менять его, но может расположить рубашку каждой из карт тем или иным образом. Мог ли экстрасенс так договориться с помощником, когда тот ещё не знал порядок карт, чтобы обеспечить угадывание масти не менее чем
  a) 19 карт;
  б) 23 карт?

Прислать комментарий     Решение

Задача 109432

Темы:   [ Теория алгоритмов (прочее) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 4+
Классы: 7,8,9

Буратино ходит по улицам города, на одном из перекрёстков которого зарыт клад. На каждом перекрёстке ему по радио сообщают, приблизился он к кладу или удалился (по сравнению с предыдущим перекрёстком). Радио либо всегда говорит правду, либо всегда лжёт (но Буратино не знает, лжёт оно или нет).
Сможет ли Буратино точно узнать, где закопан клад, если план города имеет вид:
а) ,
б) ?
(Перекрёстки отмечены точками.)
Прислать комментарий     Решение


Задача 109628

Темы:   [ Теория алгоритмов (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 8,9,10

Во взводе служат три сержанта и несколько солдат. Сержанты по очереди дежурят по взводу. Командир издал такой приказ.
  1. За каждое дежурство должен быть дан хотя бы один наряд вне очереди.
  2. Никакой солдат не должен иметь более двух нарядов и получать более одного наряда за одно дежурство.
  3. Списки получивших наряды ни за какие два дежурства не должны совпадать.
  4. Сержант, первым нарушивший одно из изложенных выше правил, наказывается гауптвахтой.
Сможет ли хотя бы один из сержантов, не сговариваясь с другими, давать наряды так, чтобы не попасть на гауптвахту?

Прислать комментарий     Решение

Задача 110927

 [Паук и бабочка]
Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 7,8,9,10,11

Паук в лесу сплёл паутину. Длинные нити привязал к веткам. И в эту паутину залетела бабочка. За один ход бабочка или паук могут передвинуться по отрезку нити в соседнюю точку пересечения нитей; бабочка также может выбраться на конец нити (ветку), если перед этим находилась в соседней точке пересечения. Они ходят по очереди, начинает бабочка. Если бабочка смогла добраться до веток, она спаслась (это её победа). Если паук добрался до бабочки, он её съедает (и это его победа). Возможен и такой исход, когда никто не побеждает, а игра длится бесконечно.

  а) Чем закончится игра в ситуации, изображённой на рисунке? (У паутины четыре кольца и семь радиусов.
  б) Чем закончится игра, если колец три, а радиусов семь?
  в) Чем закончится игра, если колец четыре, а радиусов десять?
  г) Разберите общий случай:  K ≥ 2  колец и  R ≥ 3  радиусов.

Прислать комментарий     Решение

Страница: << 90 91 92 93 94 95 96 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .