ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

На знакомом нам заводе вырезают металлические диски диаметром 1 м. Известно, что диск диаметром ровно 1 м весит ровно 100 кг. При изготовлении возникает ошибка измерения, и поэтому стандартное отклонение радиуса составляет 10 мм. Инженер Сидоров считает, что стопка из 100 дисков в среднем будет весить 10000 кг. На сколько ошибается инженер Сидоров?

Вниз   Решение


В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что $ \angle$A = $ \angle$C = $ \angle$E, AB = a, CD = b, EF = c. Найдите площадь шестиугольника ABCDEF.

ВверхВниз   Решение


Вам дана программа, решающая 136 задачу (p139.pas).
Требуется найти в ней ошибку, и объяснить (письменно
или устно), почему так происходит.

Текст программы p139.pas

const nmax=100;

var a:array[1..nmax] of integer;
    n:integer;
    i,j,g:integer;

    f1,f2:text;

begin
assign(f1,'input.txt');
reset(f1);
assign(f2,'output.txt');
rewrite(f2);
                                  {Чтение входных данных}
read(f1,n);
for i:=1 to n do read(f1,a[i]);
                                  {Сортировка массива}

for i:=1 to n do begin            {Подбираем число на i-ое место}

  g:=i;                           {Считаем, что самое маленькое число,
                                   которое нам встретилось, стоит на месте i}

  for j:=i+1 to n do              {Перебираем все числа с i+1 до конца массива}
    if a[j]<a[g] then g:=j;       {Если нашли число, которое меньше,
                                   чем то, что уже найдено, запоминаем его}

                                  {Меняем местами числа, стоящие на i-ом и
                                   на g-ом местах }
                                  {Если a[i]=x, a[g]=y, то после выполнения
                                   команды: }
  a[i]:=a[i]+a[g];                {a[i]=x+y, a[g]=y}
  a[g]:=a[i]-a[g];                {a[i]=x+y, a[g]=(x+y)-y=x}
  a[i]:=a[i]-a[g];                {a[i]=(x+y)-x=y}
                                  {То есть после этого a[i]=y, a[g]=x
                                   обмен значений произошел}

  end;

                                  {Выводим результат}
for i:=1 to n do
  write(f2,a[i],' ');
close(f1);
close(f2);
end.

ВверхВниз   Решение


Найдите значение выражения log12252-log121,75

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 10]      



Задача 57452

Тема:   [ Симметричные неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

а)  cos2$ \alpha$ + cos2$ \beta$ + cos2$ \gamma$ $ \geq$ 3/4.
б) Для тупоугольного треугольника

cos2$\displaystyle \alpha$ + cos2$\displaystyle \beta$ + cos2$\displaystyle \gamma$ > 1.


Прислать комментарий     Решение

Задача 57453

Тема:   [ Симметричные неравенства для углов треугольника ]
Сложность: 4+
Классы: 9

а)  cos$ \alpha$cos$ \beta$ + cos$ \beta$cos$ \gamma$ + cos$ \gamma$cos$ \alpha$ $ \leq$ 3/4.
Прислать комментарий     Решение


Задача 111266

Темы:   [ Симметричные неравенства для углов треугольника ]
[ Неравенства для углов треугольника ]
[ Применение тригонометрических формул (геометрия) ]
[ Тригонометрические неравенства ]
[ Теорема синусов ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Неравенства с медианами ]
Сложность: 4+
Классы: 9,10,11

Докажите, что если α , β и γ – углы остроугольного треугольника, то sinα + sinβ + sinγ > 2 .
Прислать комментарий     Решение


Задача 57454

Тема:   [ Симметричные неравенства для углов треугольника ]
Сложность: 5
Классы: 9

sin 2$\displaystyle \alpha$ + sin 2$\displaystyle \beta$ + sin 2$\displaystyle \gamma$ $\displaystyle \leq$ sin($\displaystyle \alpha$ + $\displaystyle \beta$) + sin($\displaystyle \beta$ + $\displaystyle \gamma$) + sin($\displaystyle \gamma$ + $\displaystyle \alpha$).

Прислать комментарий     Решение

Задача 57446

Темы:   [ Геометрические интерпретации в алгебре ]
[ Симметричные неравенства для углов треугольника ]
[ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Синусы и косинусы углов треугольника ]
Сложность: 4+
Классы: 9,10

а)  1 < cos$ \alpha$ + cos$ \beta$ + cos$ \gamma$ $ \leq$ 3/2;
б)  1 < sin($ \alpha$/2) + sin($ \beta$/2) + sin($ \gamma$/2) $ \leq$ 3/2.
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 10]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .