|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) Дан выпуклый многоугольник A1A2...An. На стороне A1A2 взяты точки B1 и D2, на стороне A2A3 – точки B2 и D3, ..., на стороне AnA1 – точки Bn и D1 так, что если построить параллелограммы A1B1C1D1, A2B2C2D2, ..., AnBnCnDn, то прямые A1C1, A2C2, ..., AnCn пересекутся в одной точке. Докажите равенство A1B1·A2B2·...·AnBn = A1D1·A2D2·...·AnDn. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 501]
Найдите сторону квадрата, вписанного в окружность радиуса 8.
Диагонали ромба равны 24 и 70. Найдите сторону ромба.
Найдите диагонали ромба, если они относятся как 3 : 4, а периметр равен 1.
Прямая, проходящая через вершину A квадрата ABCD, пересекает сторону CD в точке E и прямую BC в точке F. Докажите, что 1/AE2 + 1/AF2 = 1/AB2.
Квадрат вписан в равнобедренный прямоугольный треугольник, причём одна вершина квадрата расположена на гипотенузе, противоположная ей вершина совпадает с вершиной прямого угла треугольника, а остальные лежат на катетах. Найдите сторону квадрата, если катет треугольника равен a.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 501] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|