ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Произведение некоторых 1986 натуральных чисел имеет ровно 1985 различных простых делителей.
Доказать, что либо одно из этих чисел, либо произведение нескольких из них является квадратом натурального числа.

Вниз   Решение


Сколько существует шестизначных чисел, все цифры которых имеют одинаковую чётность?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



Задача 67480

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Автор: Янжинов С.

У двух многочленов с вещественными коэффициентами старшие коэффициенты равны 1. У каждого многочлена степень нечётна и равна числу его различных вещественных корней. Произведение значений первого многочлена в корнях второго равно 2024. Найдите произведение значений второго многочлена в корнях первого.
Прислать комментарий     Решение


Задача 78003

Темы:   [ Многочлены (прочее) ]
[ Производная и кратные корни ]
Сложность: 3
Классы: 10,11

Доказать, что если     то  x4 + a1x³ + a2x² + a3x + a4  делится на  (x – x0)².

Прислать комментарий     Решение

Задача 116227

Тема:   [ Многочлены (прочее) ]
Сложность: 3
Классы: 10,11

Сравните между собой наименьшие положительные корни многочленов  x2011 + 2011x – 1  и  x2011 – 2011x + 1.

Прислать комментарий     Решение

Задача 30263

Темы:   [ Многочлены (прочее) ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 9,10,11

Автор: Жуков Г.

Найдите все n, при которых для любых двух многочленов P(x) и Q(x) степени n найдутся такие одночлены axk и bxl
(0 ≤ k ≤ n,  0 ≤ l ≤ n),  что графики многочленов  P(x) + axk  и  Q(x) + bxl  не будут иметь общих точек.

Прислать комментарий     Решение

Задача 60964

Тема:   [ Многочлены (прочее) ]
Сложность: 3+
Классы: 8,9,10

Пусть  x1, x2,..., xn  – корни уравнения  anxn + ... + a1x + a0 = 0.  Какие корни будут у уравнений
  а)  a0xn + ... + an–1x + an = 0;
  б)  anx2n + ... + a1x² + a0 = 0?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 66]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .