Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 181]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Пусть O – центр правильного треугольника ABC. Из произвольной точки P плоскости опустили перпендикуляры на стороны треугольника или их продолжения. Обозначим через M точку пересечения медиан треугольника с вершинами в основаниях этих перпендикуляров. Докажите, что M – середина отрезка PO.
|
|
Сложность: 4- Классы: 10,11
|
На окружности, описанной около прямоугольника ABCD, выбрана точка K. Оказалось, что прямая CK пересекает отрезок AD в такой точке M, что
AM : MD = 2. Пусть O – центр прямоугольника. Докажите, что точка пересечения медиан треугольника OKD лежит на описанной окружности треугольника COD.
С помощью циркуля и линейки постройте треугольник по трём медианам.
Внутри треугольника ABC взята точка P так, что площади
треугольников ABP, BCP и ACP равны. Докажите, что P —
точка пересечения медиан треугольника.
|
|
Сложность: 4 Классы: 8,9,10
|
а) Найдите геометрическое место центров тяжести треугольников, вершины которых лежат на сторонах данного треугольника (по одной вершине внутри каждой стороны).
б) Найдите геометрическое место центров тяжести тетраэдров, вершины которых лежат на гранях данного тетраэдра (по одной вершине внутри каждой грани).
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 181]