Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 152]
|
|
Сложность: 4 Классы: 8,9,10
|
В трапеции ABCD боковая сторона CD перпендикулярна основаниям,
O – точка пересечения диагоналей. На описанной окружности треугольника OCD взята точка S, диаметрально противоположная точке O. Докажите, что ∠BSC = ∠ASD.
|
|
Сложность: 4- Классы: 9,10,11
|
В угол с вершиной A вписана окружность, касающаяся сторон угла в точках B и C. Прямая, проходящая через A, пересекает окружность в точках D и E. Хорда BX параллельна прямой DE. Докажите, что отрезок XC проходит через середину отрезка DE.
В трапеции ABCD диагонали пересекаются в точке O. На боковой стороне CD выбрана точка M, а на основаниях BC и AD – точки P и Q так, что отрезки MP и MQ параллельны диагоналям трапеции. Докажите, что прямая PQ проходит через точку O.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан четырёхугольник ABCD. Оказалось, что описанная окружность треугольника ABC, касается стороны CD, а описанная окружность треугольника ACD касается стороны AB. Докажите, что диагональ AC меньше, чем расстояние между серединами сторон AB и CD.
|
|
Сложность: 4- Классы: 9,10,11
|
В треугольнике ABC угол B равен 60°. Точка D внутри треугольника такова, что ∠ADB = ∠ADC = ∠BDC.
Найдите наименьшее значение площади треугольника ABC, если BD = a.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 152]