ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Каждая из шести окружностей касается четырех из оставшихся пяти (рис.). Докажите, что для любой пары несоприкасающихся окружностей (из этих шести) их радиусы и расстояние между центрами связаны соотношением d2 = r12 + r22±6r1r2 (к плюск — если окружности не лежат одна внутри другой, к минуск — в противном случае).


Вниз   Решение


На высотах $AA_0$, $BB_0$, $CC_0$ остроугольного неравностороннего треугольника $ABC$ отметили соответственно точки $A_1, B_1, C_1$ так, что  $AA_1 = BB_1 = CC_1 = R$,  где $R$ – радиус описанной окружности треугольника $ABC$. Докажите, что центр описанной окружности треугольника $A_1B_1C_1$ совпадает с центром вписанной окружности треугольника $ABC$.

ВверхВниз   Решение


Один фермер сварил сыр в виде неправильной пятиугольной призмы, а другой — в виде правильной четырёхугольной пирамиды, высота которой в два раза меньше стороны основания. Ночью мыши отъели от всех вершин этих многогранников все частицы сыра, которые находились на расстоянии не больше 1 см от соответствующей вершины. У съеденных кусков сыра не было общих частиц. Какой из фермеров понёс больший ущерб и во сколько раз его ущерб больше?

ВверхВниз   Решение


Сколько плоскостей симметрии может иметь треугольная пирамида?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]      



Задача 103899

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 2
Классы: 7

Кролик, готовясь к приходу гостей, повесил в трёх углах своей многоугольной норы по лампочке. Пришедшие к нему Винни-Пух и Пятачок увидели, что не все горшочки с мёдом освещены. Когда они полезли за мёдом, две лампочки разбились. Кролик перевесил оставшуюся лампочку в некоторый угол так, что вся нора оказалась освещена. Могло ли такое быть? (Если да, нарисуйте пример, если нет, обоснуйте ответ.)

Прислать комментарий     Решение


Задача 35054

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 7,8

В вершинах куба расставлены цифры 1, 2, ..., 8. Докажите, что есть ребро, цифры на концах которого отличаются не менее чем на 3.

Прислать комментарий     Решение

Задача 116655

Тема:   [ Комбинаторная геометрия (прочее) ]
Сложность: 2+
Классы: 5,6,7

Из 16 спичек сложен ромб со стороной в две спички, разбитый на треугольники со стороной в одну спичку (см. рисунок).

А сколько спичек потребуется, чтобы сложить ромб со стороной в 10 спичек, разбитый на такие же треугольники со стороной в одну спичку?

Прислать комментарий     Решение

Задача 35357

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Куб ]
Сложность: 2+
Классы: 7,8

Какое максимальное количество фигурок 2*2*1 можно уложить в куб 3*3*3?
Прислать комментарий     Решение


Задача 35433

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 5,6,7

Можно ли в квадрате 10*10 расставить 12 кораблей 1*4 (для игры типа "морской бой") так, чтобы корабли не соприкасались друг с другом (даже вершинами)?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 75]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .