ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое мальчиков играют в такую игру: они по очереди ставят ладьи на шахматную доску. Выигрывает тот, при ходе которого все клетки доски оказываются битыми поставленными фигурами. Кто выиграет, если оба стараются играть наилучшим образом? В треугольнике ABC из точки E стороны BC проведена прямая, параллельная высоте BD и пересекающая сторону AC в точке F. Отрезок EF делит треугольник ABC на две равновеликие фигуры. Найдите EF, если BD = 6, AD : DC = 2 : 7. x, y – числа из отрезка [0, 1]. Докажите неравенство
Внутри треугольника ABC нашлись такие точки P и Q, что точка P удалена от прямых AB, BC, CA на расстояния 6, 7 и 12 соответственно, а точка Q удалена от прямых AB, BC, CA на расстояния 10, 9 и 4 соответственно. Найдите радиус вписанной окружности треугольника ABC. В треугольник с периметром, равным 20, вписана окружность. Отрезок касательной, проведённый к окружности параллельно основанию, заключённый между сторонами треугольника, равен 2,4. Найдите основание треугольника. 2n конфет разложены по n коробкам. Девочка и мальчик по очереди берут по одной конфете, первой выбирает девочка. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1010]
Ключом шифра, называемого "поворотная решетка", является трафарет, изготовленный из квадратного листа клетчатой бумаги размера n×n
Докажите, что не существует многогранника, у которого было бы ровно семь рёбер.
Сколько существует шестизначных чисел, делящихся на 5?
Сколькими способами можно выбрать четырёх человек на четыре различные должности, если имеется девять кандидатов на эти должности?
На плоскости дано n прямых общего положения. Чему равно число образованных ими треугольников?
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 1010]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке