Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 136]
|
|
Сложность: 4 Классы: 7,8,9
|
В колоде 16 карт, пронумерованных сверху вниз. Разрешается снять часть колоды сверху, после чего снятую и оставшуюся части колоды, не переворачивая "врезать" друг в друга. Может ли случиться, что после нескольких таких операций карты окажутся пронумерованными снизу вверх? Если да, то за какое наименьшее число операций это может произойти?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Есть 100 кучек по 400 камней в каждой. За ход Петя выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности числа камней в этих двух кучках. Петя должен удалить все камни.
Какое наибольшее суммарное количество очков он может при этом получить?
|
|
Сложность: 4 Классы: 10,11
|
Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?
|
|
Сложность: 4 Классы: 8,9,10
|
Имеется кусок цепи из 60 звеньев, каждое из которых весит 1 г. Какое
наименьшее число звеньев надо расковать, чтобы из образовавшихся частей можно
было составить все веса в 1 г, 2 г, 3 г, ..., 60 г (раскованное звено
весит тоже 1 г)?
|
|
Сложность: 4 Классы: 8,9,10
|
Два маляра красят забор, огораживающий дачные участки. Они приходят через день
и красят по одному участку (участков 100 штук) в красный или зелёный цвет.
Первый маляр дальтоник и путает цвета, он помнит, что и в какой цвет он сам
покрасил, и видит, что покрасил второй маляр, но не знает, в какой цвет.
Первый маляр добивается того, чтобы в наибольшем числе мест зелёный участок
граничил с красным. Какого наибольшего числа переходов он может добиться (как
бы ни действовал второй маляр)?
Замечание.
Считается, что дачные участки расположены в одну линию.
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 136]